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Abstract. Learning from data streams is a challenge faced by data
science professionals from multiple industries. Most of them struggle
hardly on applying traditional Machine Learning algorithms to solve
these problems. It happens so due to their high availability on ready-
to-use software libraries on big data technologies (e.g. SparkML). Nev-
ertheless, most of them cannot cope with the key characteristics of this
type of data such as high arrival rate and/or non-stationary distribu-
tions. In this paper, we introduce a generic and yet simplistic framework
to fill this gap denominated Concept Neurons. It leverages on a com-
bination of continuous inspection schemas and residual-based updates
over the model parameters and/or the model output. Such framework
can empower the resistance of most of induction learning algorithms to
concept drifts. Two distinct and hence closely related flavors are intro-
duced to handle different drift types. Experimental results on successful
distinct applications on different domains along transportation industry
are presented to uncover the hidden potential of this methodology.
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1 Introduction

Today’s hype around big data technologies floods the market of professionals
with distinct backgrounds and yet a common job role: data scientist. Typically,
they are actually very experienced on one of data science related fields (e.g. soft-
ware engineering). However, they also commonly lack on the theoretical back-
ground required to adequately use more than off the shelf Machine Learning
techniques and/or methodologies on their daily tasks.

The requirements for a more advanced framework varies naturally from task
to task. Hitherto, this issue is more evident when a data mining (DM) task
requires real-time learning. There are two key issues that empower such fact
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(II-1) an explanatory learning model (learned either offline or online) to be in
place. Then, (II-2) a continuous inspection schema is used to monitor the recent
residual’s distribution (i.e. windowing) and trigger alarms. Whenever an alarm
is triggered, a corrective neuron is activated to start adding up small percentages
(i.e. learning rate) of the prediction’s residuals to our model’s output. This rate
can be increased as novel alarms are triggered or deactivated instead in absence
of an alarm for a long period (i.e. here denoted activation period). This mecha-
nism aims to handle (iv) recurrent drifts which are limited in time or even bursty
ones (when coping with an online learning model). This section describes this
methodology fundamentally, departing from its roots in optimization theory till
its practical application to Supervised Learning problems.
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Fig. 1. Timewise drift illustration on a highway flow count data using kernel density
estimation (KDE). Globally, the samples approximate a theoretical gaussian density
curve. However, this is not true for some day periods due to drifts.

3.1 Stochastic Learning from Gradients

Let y1,...,y: : i € R, Vi € {1..t} denote the values of target variable of interest
Y observed till current time ¢, e.g. train passenger load, and zi,...,x; : x; €
R", Vi € {1..t} be the values of an n-dimensional feature matrix X € R"*!.
Regression problems aim to infer the following function:

f:x;,0 — R such that f(z,0) = f(z;) =y, Vo, € X,y €Y (1)

where f(x;) denotes the true unknown function which is generating the samples’
target variable and f (zi,0) = g; be an approximation dependent on the feature
vector z; and an unknown parameter vector § € R™ (given by some induction
model M). Typically, M determines the functional form of f (z,0) as well as
the values of 6 by formulating a data-driven optimization problem as

f(wia 9) = argAmin Zz:l J(e? f7 L, yl) (2)
7,0

where J denotes a cost function of interest and ¢ the number of samples in the
dataset. Standard gradient descent is a classical solver. Lets assume that we

































